jueves, 22 de diciembre de 2011

Matemáticos españoles resuelven el problema de describir cómo rompe una ola

Predecir cuándo se formará un tornado, cuándo romperá una ola o simplemente hacia dónde se moverá una gota sobre un plano son problemas tan difíciles como útiles. Si se resolvieran habría modelos de clima mucho más precisos y coches o aviones que consumirían mucho menos combustible, por ejemplo. El reto común a todos ellos es averiguar cómo se mueve un fluido, una pregunta a la que los matemáticos llevan enfrentándose desde el siglo XVII y que forma parte de los problemas llamados del milenio, cuya resolución se premia con un millón de dólares.
Olas rompiendo en una playa
Olas rompiendo en una playa. Imagen: Heliosphere
Un equipo integrado por cuatro matemáticos españoles y un estadounidense –que obtuvo en 1978 la medalla Fields– ha resuelto ahora un aspecto del problema. Su solución describe matemáticamente cómo se produce la ruptura de una ola.
“Nuestro resultado no resuelve el Problema del Milenio, pero las nuevas ideas que hemos desarrollado sí abren vías para acercarse a él”, señala Diego Córdoba, investigador del Instituto de Ciencias Matemáticas (ICMAT-CSIC) que recientemente ha obtenido el Premio Miguel Catalán para científicos menores de 40 años y uno de los autores.
Curiosamente, el problema resuelto parece en principio más difícil que el seleccionado por el Instituto Clay estadounidense a principios de este siglo para ser uno de los siete Problemas del Milenio. Pero las apariencias engañan.
Lo que el trabajo ahora publicado demuestra es que en las ecuaciones que hoy en día se usan para describir el movimiento de los fluidos puede formarse lo que los matemáticos llaman una singularidad. Las singularidades son lo que ocurre cuando rompe una ola, cuando se forma un tornado o cuando un fluido se vuelve turbulento. Sobre el papel, el fenómeno se traduce en que una de las variables que describen ese fluido, como su velocidad, su presión o su densidad –entre otras–, cambia de forma explosiva y alcanza un valor infinito.

No hay comentarios:

Publicar un comentario